g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
↳ QTRS
↳ DependencyPairsProof
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
G2(x, h2(y, z)) -> G2(x, y)
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
G2(h2(x, y), z) -> G2(x, f2(y, z))
G2(f2(x, y), z) -> G2(y, z)
G2(x, h2(y, z)) -> G2(x, y)
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(f2(x, y), z) -> G2(y, z)
G2(x, h2(y, z)) -> G2(x, y)
Used ordering: Polynomial Order [17,21] with Interpretation:
G2(h2(x, y), z) -> G2(x, f2(y, z))
POL( G2(x1, x2) ) = x1 + x2 + 1
POL( f2(x1, x2) ) = x1 + x2 + 1
POL( h2(x1, x2) ) = x1 + x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
G2(h2(x, y), z) -> G2(x, f2(y, z))
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(h2(x, y), z) -> G2(x, f2(y, z))
POL( G2(x1, x2) ) = x1 + x2 + 1
POL( f2(x1, x2) ) = max{0, -1}
POL( h2(x1, x2) ) = x1 + x2 + 1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
g2(f2(x, y), z) -> f2(x, g2(y, z))
g2(h2(x, y), z) -> g2(x, f2(y, z))
g2(x, h2(y, z)) -> h2(g2(x, y), z)